
PHYSICAL REVIEW E 68, 036132 ~2003!
Criticality and market efficiency in a simple realistic model of the stock market
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We discuss a simple model based on the minority game which reproduces the mainstylized factsof
anomalous fluctuations in finance. We present the analytic solution of the model in the thermodynamic limit.
Stylized facts arise only close to a line of critical points with nontrivial properties, marking the transition to an
unpredictable market. We show that the emergence of critical fluctuations close to the phase transition is
governed by the interplay between the signal to noise ratio and the system size. These results provide a clear
and consistent picture of financial markets, where stylized facts and verge of unpredictability are intimately
related aspects of the same critical systems.
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Understanding the origin of the anomalous collect
fluctuations arising in stock markets poses novel and fa
nating challenges in statistical physics. Stock market pri
are characterized by anomalous collective fluctuation
known asstylized facts@1#—which are strongly reminiscen
of critical phenomena: Prices do not follow a simple rand
walk process, but rather price increments are fat tailed
tributed and their absolute value exhibits long range auto
relations, called volatility clustering.

The connection with critical phenomena is natural, b
cause financial markets are indeed complex systems of m
interacting degrees of freedom—the traders. However,
nature of the two phases is still unclear. By means of ag
based modeling, it has been realized@2–6# that stylized facts
are due to the way in which the trading activity of agen
interacting in a market ‘‘dresses’’ the fluctuations arisi
from economic activity—the so-calledfundamentals. Refer-
ence@6# has shown that very simple models based on
minority game@7# can reproduce a quite realistic and ric
behavior. Their simplicity makes an analytical approach
these models possible, using tools of statistical physics.
though minority game models do not capture the full co
plexity of financial markets@8–10#, the emergence o
anomalous fluctuations in such simple models, besides
viding a picture for the behavior of real markets, also po
novel questions in statistical physics which deserve inte
in their own.

In this paper, we first introduce the simplest possi
grand canonical minority game~GCMG! which reproduces
the main stylized facts, i.e., fat tails and volatility clusterin
Then we present the analytic solution of this model in
relevant thermodynamic limit. It shows that the behavior
GCMG, in this limit, exhibits Gaussian fluctuations for a
parameter values, but on a line of critical points which ma
a phase transition at which the market becomes informat
ally efficient ~i.e., unpredictable!. For finite size systems, nu
merical simulations reveal that stylized facts emerge clos
the transition line, but they abruptly disappear as the sys
size increases. Remarkably, the vanishing of stylized fa
when the system’s size increases also occurs in a varie
models of financial markets@11#; note that the models o
Refs.@8,9# are not affected by finite size effects. We prese
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a theory of finite size effects which is fully confirmed b
numerical simulations. This allows us to conclude that!
anomalous fluctuations are properties of the critical poin
GCMG and ii! their occurrence is a consequence of mark
being close to efficiency. Put differently, the standard mo
of mathematical finance where markets are efficient a
price fluctuations are Gaussian@2# is never realized. It is
exactly in the limit where markets become efficient th
anomalous fluctuations arise.

The phase transition is quite unique as it mixes featu
which are typical of first order phase transitions—as disc
tinuities and phase coexistence—and of second order p
transitions—such as the divergence of correlation volum
and finite size effects.

In the market described by the minority game@7#, agents
i 51, . . . ,N submit a bidbi(t) to the market in every period
t51,2, . . . .Agents whose bid has the opposite sign of t
total bidA(t)5( ibi(t), win whereas the others lose. Agen
bid according to atrading strategywhich prescribes a bid
ai

m(t)561 for each possible value of the public informatio
variablem(t), which is drawn uniformly from the integer
1, . . . ,P at each time. Each agent is assigned one trad
strategyai

m , randomly chosen from the set of 2P possible
strategies of this type. Agents are adaptive and may decid
refrain from playing if their strategy is not good enoug
@3,4#. More precisely, the bids of agents take the formbi(t)
5f i(t)ai

m(t) where f i(t)51 or 0 according to whethe
agenti trades or not. In order to assess the performance
their strategy, agents assign scoresUi(t) which they update
by

Ui~ t11!5Ui~ t !2ai
m(t)A~ t !2e i , ~1!

where A(t)5( if i(t)ai
m(t) . Agents trade (f i51) only if

their scoreUi(t) is large enough. Here we suppose that@12#

Prob$f i~ t !51%5
1

11eGUi (t)
, ~2!

whereG.0 is a constant. The connection with markets go
along the lines of Refs.@4–6,10#, which show thatA(t) is
proportional to the difference of price logarithms; here, w
take lnp(t11)5ln p(t)1A(t).
©2003 The American Physical Society32-1
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In words, an agent reward his strategy if it prescribes b
ai

m which tend to coincide with thoseb(t)52sign A(t) of
the minority of agents. If2ai

m(t)A(t) is larger thane i , the
scoreUi increases. The thresholde i in Eq. ~1! models the
incentives of agents for trading in the market. Investors w
need to trade in the market for exchanging goods or as
will have e i,0. On the contrary, speculators who only tra
for profiting of price fluctuations typically havee i.0. Of
course there may be a whole range of types of traders, f
prudent investors (e i.0) to risk-lover speculators (e i,0).
Here we focus, for simplicity, on the casee i5e for i<Ns
and e i52` for Ns, i<N. The Np5N2Ns agents who
havee i52`, calledproducersafter Refs.@13,14#, trade no
matter what, whereas the remainingNs , the speculators,
trade only if their strategy puts them on the minority si
often enough.

If the conditional time averagêAum& of A(t) given
m(t)5m is nonzero, then the knowledge ofm(t) allows a
statistical prediction of the sign ofA(t). A measure of pre-
dictability is hence given by

H05^A&25
1

P (
m51

P

^Aum&2,

where we introduced the notation(¯) for averages overm
whereaŝ¯& denotes averages on the stationary state. W
H050 the market is unpredictable orinformationally effi-
cient. Volatility is instead defined ass25^A2& and it mea-
sures market’s fluctuations. A further quantity of interest
the number of active speculators,Nact(t)5( i^f i(t)& in the
market.

Exact results can be obtained in the thermodynamic lim
which is defined as the limitNs ,Np ,P→`, keeping constan
the reduced number of speculators and producersns
5Ns /P and np5Np /P. In this limit, both s2 and H0 di-
verge with the system size, sinceA(t);AN. Hence we shall
consider the rescaled quantitiesH0 /P or s2/P. A detailed
account of the calculation will be given elsewhere@15#. Here
we just discuss the main step and the results. Following R
@16#, we derive an Ito stochastic differential equations for t
strategy scoresyi(t)5Ui(t) in the rescaled continuous tim
t5t/N:

dyi

dt
52ai^A&y2e1h i . ~3!

Hereh i is a zero average Gaussian noise term with

^h i~t!h j~t8!&5
1

N
aiaj^A

2&yd~t2t8!. ~4!

In Eqs.~3, 4! averageŝ¯&y are taken on the distribution o
f i(t) in Eq. ~2!, which depends onyi(t) in a nonlinear way:
Prob$f i(t)51%51/@11eGyi (t)#. Hence Eq.~3! is a quite
complex system of nonlinear equations with a noise stren
proportional to the time dependent volatilitŷA2&y. This
feedback will be responsible for the emergence of volati
buildups.
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Following Refs.@16,17# we find that the fraction̂f i& of
times that agenti plays his active strategy in the stationa
state is the solution of the minimization of the function

He5
1

P (
m51

P F(
i 51

N

^f i&ai
m1 (

i 5Ns11

Ns1Np

ai
mG2

12e(
i

^f i&,

~5!

with respect tô f i&. Note that fore50 this function reduces
to the predictabilityH0. For eÞ0, the solution to this prob-
lem, and hence the stationary state, is unique. An exact
tistical mechanics description of the solution$^f i&% can be
carried out with the replica method, because the replica s
metric ansatz is exact. Furthermore, the solution to
Fokker-Planck equation corresponding to Eq.~3! can be well
approximated by a factorized ansatz fore .0. This means
that the off-diagonal correlations vanish@^(f i2^f i&)(f j
2^f j&)&50, for iÞ j ] and, as a consequence, the volatili
turns out to be given bys25^A2&5H01( i 51

Ns ^f i&(1
2^f i&). The solution$^f i&% of the minimization ofHe pro-
vides a complete description of the model in the limitN
→` for e.0. In particular the behavior ofs2 is indepen-
dent ofG.

Figure 1 shows that all these conclusions are perfe
supported by numerical simulations: With a fixed numbernp
of producers, as the numberns of speculators increases, th
market becomes more and more unpredictable, i.e.,H0 de-
creases. At the same time also the volatilitys2 decreases. In
a market with few speculators (ns,1 in Fig. 1!, most of the
fluctuations inA(t) are due to the random choice ofm(t)
~i.e., s2.H0) and the numbernact of active speculators
grows approximately linearly withns .

When ns increases further, the market reaches a po
where it is barely predictable. Then, fore.0 the number of

FIG. 1. Theory and numerical simulations:nact ~top! ands2/P
and H/P ~bottom! as a function ofns for e50.1 ~solid line! and
e520.01 ~dashed line!. Numerical results fore50.1 ~open sym-
bols! ande520.01~full symbols! are averages over 200 runs, wit
NsP510 000 fixed andG5`.
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active traders decreases and finally converges to a cons
This means that the market becomes highly selective: On
negligible fraction of speculators trade (f i(t)51) whereas
the majority is inactive (f i(t)50). The volatility s2 also
remains constant in this limit.

For e,0 we see a markedly different behavior: The nu
ber of active speculators continues growing withns even if
the market is unpredictableH0'0. The volatilitys2/P has a
minimum and then it increases withns in a way which de-
pends on G. In other words, e50 for ns>ns

!(np)
(54.15 . . . , fornp51) is the locus of a first order phas
transition across whichNact and s2 exhibit a discontinuity.
This same picture applies to a wider range of GCMG mod
such as that of Ref.@6#.

Numerical simulations reproduce anomalous fluctuati
similar to those of real financial markets close to the ph
transition line. As shown in Fig. 2, the distribution ofA(t) is
Gaussian for small enoughns , and has fatter and fatter tail
asns increases; the same behavior is seen for decreasine.
In particular the distribution ofA(t) shows a power law be
havior P(uAu.x);x2b with an exponent which we esti
mated asb.2.8 and 1.4 forns520 and 200 respectively an
e50.01. Note that a realistic valueb'3 @19# is obtained for
ns520.

This is inconsistent, at first sight, with the theoretical
sults discussed previously forN→`. Indeed, if the distribu-
tion of f i factorizes,A(t) is the sum ofNs independent
contributions and it satisfies the Central Limit Theorem. T
implies that foreÞ0 the variableA(t)/AN converges in dis-
tribution to a Gaussian variable with zero average and v
ance s2/N in the limit N→` at fixed a. There are no
anomalous fluctuations and no stylized facts. Figure 3 ind
shows that the anomalous fluctuations of Fig. 2 are finite s
effects which disappear abruptly as the system size incre
~or if G is small!.

FIG. 2. Probability distribution ofA(t).A for ns510 ~continu-
ous line!, 20, 50, 100, and 200~dash-dotted line! (PNs516 000,
np51, e50.01, G5`). Inset: time series of returnsA(t) showing
volatility clustering forns520 ~lower curve!, but not forns5200
~upper curve!.
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In order to understand these finite size effects, we n
that volatility clustering arises because the noise strengt
Eqs. ~3,4! is proportional to the time dependent volatilit
^A2&y. The noise term is a source of correlated fluctuatio
becauseaiaj^A

2&y/N;1/AN is small but nonzero, foriÞ j .
It is reasonable to assume that the dynamics will sus
collective correlated fluctuations in theyi only if the corre-
lated noise is larger than the signal2ai^A&y2e, which
agents receive form the deterministic part of Eq.~3!. Time
dependent volatility fluctuations would be dissipated by
deterministic dynamics otherwise. A quantitative translat
of this insight goes as follows: The noise correlation term
of order aiaj^A

2&y/N;s2/P(3/2), for iÞ j . This should be
compared to the square of the deterministic term of Eq.~3!
@ai^A&y1e#2;@AH0 /P1e#2. Rearranging terms, we find
that volatility clustering sets in when

H0

s2
12eAH0

P

P

s2
1e2

P

s2
.

K

AP
, ~6!

where K is a constant. This prediction is remarkably we
confirmed by Fig. 4: In the lower panel we plot the two sid
of Eq. ~6! as a function ofns for different system sizes. The
upper panel shows that the volatilitys2/N starts deviating
from the analytic result exactly at the crossing pointns

c(P)
where Eq.~6! holds true. Furthermore the inset shows th
the regionns.ns

c(P) is described by a different type of sca
ing limit. Indeed the curves of Fig. 4 collapse one on top
the other when plotted againstns /ns

c(P).
The nonlinearity of the response of agents is crucial

the onset of volatility time dependence. IfG is small the
response becomes smooth and anomalous fluctuations d
pear~see Fig. 3!. This picture is not affected by the introduc
tion of a finite memory in the learning process of agents,
example in Ref.@18#. In particular the exponents of Fig. 2 d
not depend on the memory.

FIG. 3. ~Color online! Excess kurtosis ofA(t) in simulations
with e50.01, ns570, np51, and several different system sizesP
for G51, 10, and̀ .
2-3
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The fact that, in finite systems, stylized facts arise o
close to the phase transition is reminiscent of finite size s
ing in the theory of critical phenomena: Ind-dimensional
Ising model, for example, at temperatureT5Tc1« critical
fluctuations~e.g., in the magnetization! occur as long as the
system sizeN is smaller than the correlation volume;«2dn.
But for N@«2dn the system shows the normal fluctuatio
of a paramagnet.

Equation~6! andH0 /P;e2 imply that the same occurs i
the GCMG withdn54. In other words, the critical window
shrinks asN21/4 whenN→`. However, because of the lon

FIG. 4. ~Color online! Onset of the anomalous dynamics f
different system sizes. Top:s2/N for different series of simulations
with L[PNs constant:PNs51000 ~circles!, 2000 ~squares!, 4000
~diamonds!, 8000 ~up triangles! and 16 000~left triangles!. In all
simulationsnp51, e50.1, andG5`. Bottom: Left-hand side of
Eq. ~6! ~full line! from the exact solution andK/AP5K(ns /L)1/4

~parallel dashed lines! as a function ofns (K.1.1132 in this plot!.
The intersection definesns

c(P). Inset: Collapse plot ofs2/N as a
function of ns /ns

c(P).
2.
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range nature of the interaction, anomalous fluctuations ei
concern the whole system or do not affect it at all, as clea
shown in Fig. 3. In the critical region the Gaussian pha
coexists probabilistically with a phase characterized
anomalous fluctuations. This and the discontinuous natur
the transition ate50, are usually typical of first order phas
transitions.

The picture of collective correlated fluctuations controll
by the signal to noise ratio appears to be universal for
nority games. Finite size effects close to the phase transi
of the standard minority game@7,15# are indeed explained by
the same generic argument: When the signal to noise r
H0 /s2 is of order 1/AP self-sustained collective fluctuation
arise. In addition, finite size effects appear at a distance
orderP21/4 from the critical point.

Volatility clustering also occur only close to the pha
transition in the GCMG. The effect, in real markets is know
to be due to wild fluctuations in the volume of trades@19#.
Volume is the number of active tradersNact1Np in the
GCMG. Wild volume fluctuations can only occur because
correlated collective fluctuations which arise close to critic
ity. Numerical simulations suggest that exponents vary c
tinuously on the line of critical points. This raises the que
tion of why real markets self-organize close to the critic
surface withb'3.

We conclude that the GCMG exhibits a critical behav
which is very similar to that observed in real markets. Th
with the observation that real markets are indeed close
being informationally efficient, strongly suggests that re
markets operate close to criticality. The phase transition
quite peculiar, with properties of both continuous and disc
tinuous transitions. The extension of renormalization gro
approaches to this system promises to be a quite interes
challenge.
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